Respuesta :

EXPLANATION

Given the function f(x) = x^2 -5x - 14

[tex]\mathrm{For\: a\: quadratic\: equation\: of\: the\: form\: }ax^2+bx+c=0\mathrm{\: the\: solutions\: are\: }[/tex][tex]x_{1,\: 2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex][tex]\mathrm{For\: }\quad a=1,\: b=-5,\: c=-14[/tex][tex]x_{1,2}=\frac{-\left(-5\right)\pm\sqrt{\left(-5\right)^2-4\cdot\:1\cdot\left(-14\right)}}{2\cdot\:1}[/tex]

Multiplying numbers:

[tex]x_{1,2}=\frac{-(-5)\pm\sqrt{5^2+56}}{2}[/tex]

Computing the power and adding numbers:

[tex]x_{1,\: 2}=\frac{-(-5)\pm\sqrt{81}}{2}[/tex]

Simplifying:

[tex]x_{1,\: 2}=\frac{-(-5)\pm9}{2}[/tex]

Separate the solutions:

[tex]x_1=\frac{5+9}{2},\: x_2=\frac{5-9}{2}[/tex]

Simplifying:

[tex]x_1=\frac{14}{2},\: x_2=\frac{-4}{2}[/tex]

Simplifying again the expression:

[tex]x=7,\: x=-2[/tex]

The zeros of the function are:

[tex](7,0),\text{ (-2,0)}[/tex]

RELAXING NOICE
Relax