We are asked to determine the wavelength of a 0.14 kg object with a speed of 1x10^-3 m/s. To do that we will use the following formula:
[tex]\lambda=\frac{h}{p}[/tex]Where:
[tex]\begin{gathered} \lambda=\text{ wavelength} \\ h=\text{ Plank's constant} \\ p=\text{ momentum} \end{gathered}[/tex]The momentum "p" is given by:
[tex]p=mv[/tex]Where:
[tex]\begin{gathered} m=\text{ mass} \\ v=\text{ velocity} \end{gathered}[/tex]Substituting the momentum in the formula for the wavelength:
[tex]\lambda=\frac{h}{mv}[/tex]Plank's constant is equivalent to:
[tex]h=6.626\times10^{-34}Js[/tex]Substituting the values we get:
[tex]\lambda=\frac{6.626\times10^{-34}Js}{(0.14\operatorname{kg})(1\times10^{-3}\frac{m}{s})}[/tex]Solving the operations:
[tex]\lambda=4.73\times10^{-30}m[/tex]To compare this wavelength with the wavelength of a high-speed electron moving 1/10 of the speed of light we will determine the quotient between the two wavelengths:
[tex]r=\frac{\lambda_{electron}}{\lambda}=\frac{2.4\times10^{-11}}{4.73\times10^{-30}}=5.07\times10^{18}[/tex]Therefore, the wavelength of the electron is 5.07x10^18 times larger than the wavelength of the ball.