Respuesta :

Solution:

Given the rational expression:

[tex]\begin{gathered} \frac{x^2-9}{(x-1)(x-3)} \\ when\text{ x}\ne1\text{ or 3} \end{gathered}[/tex]

When the value of x is not 1 or 3, the above expression can be expressed as

[tex]\begin{gathered} \frac{(x-3)(x+3)}{(x-1)(x-3)} \\ recall\text{ that} \\ x^2-9=x^2-3^2=(x-3)(x+3)---difference\text{ of squares} \\ thus,\text{ we have} \\ \frac{\cancel(x-3)(x+3)}{(x-1)\cancel(x-3)} \\ =\frac{x+3}{x-1} \end{gathered}[/tex]

Hence, we have

[tex]\frac{x+3}{x-1}[/tex]

The correct option is B

RELAXING NOICE
Relax