Use the sum and difference identities to rewrite the following expression as a trigonometric function of a single number.cos(cos ( 16 ) - sin ()sin ( 15 )-Зл10

Hello!
We have the expression below:
[tex]\cos (\frac{\pi}{2})\cos (\frac{3\pi}{10})-\sin (\frac{\pi}{2})\sin (\frac{3\pi}{10})[/tex]Let's remember how we can use the sum identity formula:
[tex]\cos (a+b)=\cos (a)\cos (b)-\sin (a)\sin (b)[/tex]Knowing it, let's use this property:
[tex]\cos (\frac{\pi}{2})\cos (\frac{3\pi}{10})-\sin (\frac{\pi}{2})\sin (\frac{3\pi}{10})=\cos (\frac{\pi}{2}+\frac{3\pi}{10})[/tex]Let's solve the sum:
[tex]\cos (\frac{\pi}{2}+\frac{3\pi}{10})=\cos (\frac{5\pi+3\pi}{10})=\cos (\frac{8\pi}{10})[/tex]We can simplify it by two:
[tex]\cos (\frac{8\pi}{10})=\cos (\frac{4\pi}{5})[/tex]cos(4pi/5)