Given:
[tex]cos\left(A\right)=\frac{4}{5}[/tex]To find: The angle A lies in the fourth quadrant.
[tex]sinA[/tex]Explanation:
Using the trigonometric identity,
[tex]\begin{gathered} sin^2A+cos^2A=1 \\ sin^2A+(\frac{4}{5})^2=1 \\ sin^2A+\frac{16}{25}=1 \\ sin^2A=1-\frac{16}{25} \\ sin^2A=\frac{9}{25} \\ sinA=\pm\sqrt{\frac{9}{25}} \\ sinA=\pm\frac{3}{5} \end{gathered}[/tex]Since the angle lies in the fourth quadrant.
So, the sine value in the fourth quadrant will be negative,
[tex]\begin{gathered} sinA=-\frac{3}{5} \\ sinA=-0.6000 \end{gathered}[/tex]Final answer:
The value of sine of A is,
[tex]sinA=-0.6000[/tex]