Find the real solutions, if any, of the following equation. Use the quadratic formula.

EXPLANATION
Given the equation 6x^2 = 5x
We can apply the following procedure :
Subtracting -5x to both sides:
[tex]6x^2-5x=0[/tex]Apply exponent rule:
[tex]a^{(b+c)}=a^ba^c[/tex][tex]x^2=\times[/tex][tex]=6\times-5x[/tex]Factor out common term x:
[tex]x\mleft(6x-5\mright)=0[/tex][tex]\mathrm{Using\: the\: Zero\: Factor\: Principle\colon\quad \: If}\: ab=0\: \mathrm{then}\: a=0\: \mathrm{or}\: b=0[/tex][tex]x=0\quad \mathrm{or}\quad \: 6x-5=0[/tex][tex]\mathrm{Add\: }5\mathrm{\: to\: both\: sides}\text{ from 6x -5=0}[/tex][tex]6x-5+5=0+5[/tex][tex]Simplify\colon[/tex][tex]6x=5[/tex][tex]\mathrm{Divide\: both\: sides\: by\: }6[/tex][tex]\frac{6x}{6}=\frac{5}{6}[/tex][tex]Simplify\colon[/tex][tex]x=\frac{5}{6}[/tex][tex]\mathrm{The\: solutions\: to\: the\: quadratic\: equation\: are\colon}[/tex][tex]x=0,\: x=\frac{5}{6}[/tex]Hence, the solution set is as follows:
{0 , 5/6}