Answer::
[tex]f^{-1}(x)=-\frac{1+2x}{3+5x},x\cancel{=}-\frac{3}{5}[/tex]Explanation:
We want to find the function that corresponds to the inverse function:
[tex]f(x)=\frac{3x+1}{-5x-2},x\cancel{=}-\frac{2}{5}[/tex]To do this, we find the inverse of f(x).
In order to find the inverse of f(x), follow the steps below:
Step 1: Replace f(x) with y:
[tex]y=\frac{3x+1}{-5x-2}[/tex]Step 2: Swap x and y
[tex]x=\frac{3y+1}{-5y-2}[/tex]Step 3: Make y the subject of the equation:
[tex]\begin{gathered} \text{ Cross multiply} \\ x(-5y-2)=3y+1 \\ \text{ Open the bracket on the left side:} \\ -5xy-2x=3y+1 \\ \text{ Bring all the terms containing y to one side of the equation.} \\ -5xy-3y=1+2x \\ \text{ Factor out y} \\ y(-5x-3)=1+2x \\ \text{ Divide both sides by }-5x-3 \\ y=\frac{1+2x}{-5x-3} \end{gathered}[/tex]Step 4: Replace y the inverse of f(x).
[tex]f^{-1}(x)=\frac{1+2x}{-5x-3}=\frac{1+2x}{-(5x+3)}=-\frac{1+2x}{3+5x}[/tex]The function that corresponds to the given inverse function is:
[tex]f^{-1}(x)=-\frac{1+2x}{3+5x},x\cancel{=}-\frac{3}{5}[/tex]