What is the measure of the ARC length the ARC in bold

Given
radius = 9 yd
First, convert the given angle of the arc length into radians
[tex]\begin{gathered} \theta=240°\cdot\frac{\pi}{180°} \\ \theta=\frac{4}{3}\pi \end{gathered}[/tex]Next, solve for the arc length using the formula
[tex]\begin{gathered} s=r\theta \\ \text{where} \\ r\text{ is the radius} \\ s\text{ is the arc length} \end{gathered}[/tex]Substitute y = 9 yd and we get
[tex]\begin{gathered} s=r\theta \\ s=(9\text{ yd})(\frac{4\pi}{3}) \\ s=\frac{36\pi}{3}\text{ yd} \\ s=12\pi\text{ yd} \\ \\ \text{Therefore, the arc length is equal to }12\pi\text{ yd}. \end{gathered}[/tex]