we have the expression
[tex]\frac{-3sin(x)}{10x^{10}-6}[/tex]Applying the quotient rule
The derivative is equal to
[tex]\frac{-3s\imaginaryI n(x)}{10x^{10}-6}=\frac{(-3sin(x))^{\prime}(10x^{10}-6)-(-3sin(x))(10x^{10}-6)^{\prime}}{(10x^{10}-6)^2}[/tex][tex]\frac{(-3cos(x))(10x^{10}-6)+(3s\imaginaryI n(x))(100x^9)}{(10x^{10}-6)^2}[/tex][tex]\frac{-30x^{10}cos(x)+18cos(x)+300x^9sin(x)}{(10x^{10}-6)^2}[/tex]