A gun fires a shell at an angle of elevation of 30° with a velocity of 2 x 10' ms! What are the horizontal and vertical components of the velocity? What is the range of the shell? How high will the hall rise?

The velocity of the horizontal component can be calculated below
[tex]\begin{gathered} x=u\cos \text{ }\emptyset \\ V_x=2\times10^3\times\cos 30^{\circ} \\ V_x=2000\times\cos 30^{\circ} \\ V_x=1732.05080757\approx1732.1\text{ m/s} \end{gathered}[/tex]The velocity of the vertical component can be calculated below
[tex]\begin{gathered} V_y=u\sin \emptyset \\ V_y=2\times10^3\times\sin 30^{\circ} \\ V_y=1000\text{ m/s} \end{gathered}[/tex]The range of shell(horizontal displacement) can be calculated below
[tex]\begin{gathered} r=\frac{u^2\sin 2\emptyset}{g} \\ r=\frac{4000000\sin 2(30)}{9.8} \\ r=353479.756647\text{ } \\ r=353479.8\text{ m} \end{gathered}[/tex]The height can be calculated below
[tex]h_{peak}=\frac{1000^2}{2g}=\frac{1000000}{19.6}=51020.4081633=51020.41\text{ m}[/tex]