Respuesta :

ANSWER

[tex]a_n=24\mleft(\frac{1}{2}\mright)^{n-1}[/tex]

EXPLANATION

The generic formula for a geometric sequence is:

[tex]a_n=ar^{n-1}[/tex]

a is the first term of the sequence:

[tex]\begin{gathered} a_1=ar^{1-1} \\ a_1=ar^0 \\ a_1=a \end{gathered}[/tex]

Therefore, a = 24.

Then, with the second term we can find r:

[tex]\begin{gathered} a_2=24r^{2-1} \\ 12=24r \\ r=\frac{12}{24} \\ r=\frac{1}{2} \end{gathered}[/tex]

The explicit formula for this sequence is:

[tex]a_n=24\mleft(\frac{1}{2}\mright)^{n-1}[/tex]

RELAXING NOICE
Relax