SOLUTION
To solve this, we will apply the formula
[tex]\text{Zscore = }\frac{x-\mu}{\frac{\sigma}{\sqrt[]{n}}}[/tex]Where
[tex]\begin{gathered} x=\text{ sample mean = 55500} \\ \mu=\text{ population mean = 57337} \\ \sigma=\text{ standard deviation = 7500} \\ n\text{ = number of samples = 55} \end{gathered}[/tex]So from the formula
[tex]\begin{gathered} \text{Zscore = }\frac{x-\mu}{\frac{\sigma}{\sqrt[]{n}}} \\ \\ \text{Zscore = }\frac{55500-57337}{\frac{7500}{\sqrt[]{55}}} \\ \\ \text{Zscore =}\frac{-1837}{\frac{7500}{\sqrt[]{55}}} \\ \\ \text{Zscore =-0.033026} \end{gathered}[/tex]Now, we will calculate the Zscore for -0.033026 using a Zscore table or calculator
This becomes
[tex]P(xTherefore, the probabillity = 0.48683 or 48.68%