AB has coordinates A(-15,5) and B(0,-10) . Find the coordinates of A'B' after a dilation with a scale factor of 1/5 centered at the ongin.

Answer:
A'(-3,1) and B'(0,-2).
Explanation:
The coordinates of A and B respectively are given as:
A(-15,5) and B(0,-10)
If the line is dilated by a scale factor of 1/5 centered at the origin:
The coordinates of A' will be:
[tex]\begin{gathered} A^{\prime}=\frac{1}{5}\times A=\frac{1}{5}(-15,5) \\ =(-\frac{15}{5},\frac{5}{5}) \\ A^{\prime}=(-3,1) \end{gathered}[/tex]Similarly, the coordinates of B' will be:
[tex]\begin{gathered} B^{\prime}=\frac{1}{5}\times B=\frac{1}{5}(0,-10) \\ =(\frac{0}{5},\frac{-10}{5}) \\ B^{\prime}=(0,-2) \end{gathered}[/tex]Therefore, the coordinates of A'B' are A'(-3,1) and B'(0,-2).