Respuesta :

To solve this question we need to use the Euler's formula, to simplify the sine and cosine expressions:

[tex]e^{ix}=\cos (x)+i\cdot\sin (x)[/tex]

Using this formula, we can simplify the expression in the question to:

[tex]\frac{9\cdot e^{\frac{i11\pi}{6}}}{3\sqrt{3}\cdot e^{\frac{i\pi}{4}}}[/tex]

To calculate it easier, we can separate it in a product of two fractions:

[tex]\frac{9}{3\sqrt{3}}\cdot\frac{e^{\frac{i11\pi}{6}}}{e^{\frac{i\pi}{4}}}[/tex]

To simplify the first fraction we can rationalize it, multiplying the numerator and denominator by √3:

[tex]\frac{9}{3\sqrt{3}}\cdot\sqrt{3}=\frac{9\sqrt{3}}{3\cdot3}=\frac{9\sqrt{3}}{9}=\sqrt{3}[/tex]

Now, to calculate the second fraction, we can use the property of dividing two exponencial numbers with the same base (we just need to subtract their exponents):

[tex]\frac{e^{\frac{i11\pi}{6}}}{e^{\frac{i\pi}{4}}}=e^{i(\frac{11\pi}{6}-\frac{\pi}{4})}=e^{i(\frac{22\pi-3\pi}{12})}=e^{i(\frac{19\pi}{12})}=\cos (\frac{19\pi}{12})+i\sin (\frac{19\pi}{12})=0.2588-i0.9659[/tex]

So the final expression is:

[tex]\sqrt{3}\cdot(0.2588-i0.9659)=0.4483-i1.673[/tex]

RELAXING NOICE
Relax