Respuesta :

Question 7.

Given:

BD = 18 cm

m∠BEC = 136 degrees.

Let's find the area of the shaded sector.

To find the area of the shaded sector, apply the formula:

[tex]\text{Area}=2(\frac{\theta}{360}\times\pi r^2)[/tex]

Where:

θ = 136 degrees

r is the radius

To find the radius, we have:

Diameter, BD = 18 cm

Radius = diameter/2 = 18cm/2 = 9 cm

Now, substitute values into the formula and solve for the area.

[tex]\begin{gathered} \text{Area}=2(\frac{136}{360}\times\pi\times9^2) \\ \\ \text{Area}=2(\frac{136}{360}\times\pi\times81) \end{gathered}[/tex]

Solving further, we have:

[tex]\begin{gathered} Area=2(0.378\pi\times81) \\ \\ \text{Area}=2(96.13) \\ \\ \text{Area}=192.27cm^2 \end{gathered}[/tex]

Therefore, the area of the shaded sector is 192.27 square cm.

ANSWER:

192.27 cm²

RELAXING NOICE
Relax