The center of the circle below is at P. If the radius is 8 cm. and the length of arc AB is 7 cm., find the central angle < APB to the nearest whole degree.

GIVEN:
We are given a circle with center P, a radius of length 8cm and an arc AB with length 7cm.
Required;
To find the angle measure of the central angle APB of the circle given.
Step-by-step solution;
To find the central angle of the circle given the above information, we begin by taking note of the formula for the length of an arc, and that is;
[tex]\begin{gathered} Length\text{ }of\text{ }an\text{ }arc: \\ \\ L=\frac{\theta}{360}\times2\pi r \end{gathered}[/tex]The variables given here are;
[tex]\begin{gathered} r=8cm \\ \\ L=7cm \\ \\ \theta=? \end{gathered}[/tex]Now we will substitute the known values as follows;
[tex]\begin{gathered} 7=\frac{\theta}{360}\times2\times3.14\times8 \\ \\ 7=\frac{\theta\times2\times3.14\times8}{360} \\ \\ 7=\frac{50.24\times\theta}{360} \end{gathered}[/tex]Next, we cross multiply;
[tex]\begin{gathered} \frac{7\times360}{50.24}=\theta \\ \\ 50.1592356688=\theta \end{gathered}[/tex]Rounded to the nearest degree, we now have;
ANSWER:
[tex]\theta=50\degree[/tex]Option A is the correct answer.