We will, first of all, calculate the alpha level
[tex]\alpha=1-confidence\text{ interval}[/tex]The given confidence interval is
[tex]=95\text{ \%=0.95}[/tex]Therefore, the alpha level will be
[tex]\begin{gathered} \alpha=1-0.95 \\ \alpha=0.05 \end{gathered}[/tex]for,
[tex]\begin{gathered} \frac{\alpha}{2,} \\ we\text{ will have} \\ \frac{\alpha}{2}=\frac{0.05}{2}=0.025 \end{gathered}[/tex]The degree of freedom is
[tex]\begin{gathered} df=n-2 \\ \text{where n=sample size}=24 \\ df=24-2 \\ df=22 \end{gathered}[/tex]Using a graphing calculator,
[tex]t_{\frac{\alpha}{2}}=2.073873[/tex]Hence ,
T(ALPHA/2) VALUE= 2.073873