Given the expression:
[tex](8-2)^2\cdot(2+4)^3[/tex]first we solve what is inside the parenthesis:
[tex](8-2)^2\cdot(2+4)^3=(6)^2\cdot(6)^3[/tex]Notice how we have the same number but with different exponents. We can use the following rule to simplify the expression:
[tex]\begin{gathered} a^n\cdot a^m=a^{n+m} \\ \Rightarrow(6)^2\cdot(6)^3=(6)^{2+3}=(6)^5 \end{gathered}[/tex]therefore, the simplifed expression is 6^5 = 7776