Find the lateral area of this cone.Leave your answer in terms of 1.24in-10 inLA = [ ? ]in?=TEHint: Lateral Area of a Cone = mreWhere e = slant heightEnter

Find the lateral area of this coneLeave your answer in terms of 124in10 inLA inTEHint Lateral Area of a Cone mreWhere e slant heightEnter class=

Respuesta :

Given a figure of a cone

as shown, the radius of the base = r = 10 in

And the height = h = 24 in

The lateral area (LA) will be given using the formula:

[tex]\begin{gathered} LA=\pi\cdot r\cdot l \\ l=\sqrt[]{r^2+h^2} \end{gathered}[/tex]

So, first, we'll find the value of (l) from r, and h

[tex]l=\sqrt[]{10^2+24^2}=\sqrt[]{100+576}=\sqrt[]{676}=26\text{ in}[/tex]

Then, substitute with (r) and (l) to find (LA):

[tex]LA=\pi\cdot10\cdot26=260\pi[/tex]

So, the answer will be LA = 260π in²

RELAXING NOICE
Relax