A) P(t) = ___B) What population do you predict for the year 2000?Predicted population in the year 2000= ___ million people C) What is the doubling time?Doubling time= ____years.

Given:
The number of people in 1980 is 15 million.
The number of people in 1990 is 60 million.
Let t be the number of years.
The difference between 1990 and 1980 is 10 years.
Consider the general exponential equation
[tex]P(t)=ae^{bt}[/tex]Substitute t=0 and P(0)=15, we get
[tex]15=ae^{b(0)}[/tex][tex]a=15[/tex]Substitute a=15 in the general equation, we get
[tex]P(t)=15e^{bt}[/tex]Substitute t=10 and P(10)=60, we get
[tex]60=15e^{b(10)}[/tex][tex]\frac{60}{15}=e^{10b}[/tex][tex]4=e^{10b}[/tex]Taking log on both sides, we get
[tex]In(4)=10b[/tex][tex]1.38629=10b[/tex][tex]b=\frac{1.38629}{10}=0.138629[/tex][tex]b=0.139[/tex]Substitute b=0.139 and a=15 in the general equation, we get
[tex]P(t)=15e^{0.139(t)}[/tex]Hence the exponential equation is
[tex]P(t)=15e^{0.139(t)}[/tex]In the year 2000, t=20.
Substitute t=20 in P(t), we get
[tex]P(20)=15e^{0.139(20)}[/tex][tex]P(20)=15e^{2.78}[/tex][tex]P(20)=241.78[/tex][tex]P(20)=242[/tex]In the year 2000, the predicted population is 242 million.
The doubling time is the time when the population is double.
Substitute P(t)=30 to find the doubling time.
[tex]30=15e^{0.139(t)}[/tex][tex]\frac{30}{15}=e^{0.139(t)}[/tex][tex]2=e^{0.139(t)}[/tex]Taking log on both sides, we get
[tex]In(2)=0.139\mleft(t\mright)^{}[/tex][tex]\frac{0.6931}{0.139}=t[/tex][tex]t=4.98[/tex][tex]t=5\text{ years}[/tex]The doubling time is 5 years.