A) P(t) = ___B) What population do you predict for the year 2000?Predicted population in the year 2000= ___ million people C) What is the doubling time?Doubling time= ____years.

A Pt B What population do you predict for the year 2000Predicted population in the year 2000 million people C What is the doubling timeDoubling time years class=

Respuesta :

Given:

The number of people in 1980 is 15 million.

The number of people in 1990 is 60 million.

Let t be the number of years.

The difference between 1990 and 1980 is 10 years.

Consider the general exponential equation

[tex]P(t)=ae^{bt}[/tex]

Substitute t=0 and P(0)=15, we get

[tex]15=ae^{b(0)}[/tex][tex]a=15[/tex]

Substitute a=15 in the general equation, we get

[tex]P(t)=15e^{bt}[/tex]

Substitute t=10 and P(10)=60, we get

[tex]60=15e^{b(10)}[/tex]

[tex]\frac{60}{15}=e^{10b}[/tex]

[tex]4=e^{10b}[/tex]

Taking log on both sides, we get

[tex]In(4)=10b[/tex]

[tex]1.38629=10b[/tex]

[tex]b=\frac{1.38629}{10}=0.138629[/tex]

[tex]b=0.139[/tex]

Substitute b=0.139 and a=15 in the general equation, we get

[tex]P(t)=15e^{0.139(t)}[/tex]

Hence the exponential equation is

[tex]P(t)=15e^{0.139(t)}[/tex]

In the year 2000, t=20.

Substitute t=20 in P(t), we get

[tex]P(20)=15e^{0.139(20)}[/tex]

[tex]P(20)=15e^{2.78}[/tex]

[tex]P(20)=241.78[/tex]

[tex]P(20)=242[/tex]

In the year 2000, the predicted population is 242 million.

The doubling time is the time when the population is double.

Substitute P(t)=30 to find the doubling time.

[tex]30=15e^{0.139(t)}[/tex]

[tex]\frac{30}{15}=e^{0.139(t)}[/tex]

[tex]2=e^{0.139(t)}[/tex]

Taking log on both sides, we get

[tex]In(2)=0.139\mleft(t\mright)^{}[/tex]

[tex]\frac{0.6931}{0.139}=t[/tex][tex]t=4.98[/tex][tex]t=5\text{ years}[/tex]

The doubling time is 5 years.

RELAXING NOICE
Relax