A rough diagram of the pool:
We want a border around the rectangular pool that has uniform width. Let that width be "x". A rough diagram of this is shown below:
So, the perimeter (sum of all the sides) of the outer border can be written as:
[tex](18+x+x)+(34+x+x)+(18+x+x)+(34+x+x)[/tex]This is equal to 348, since enough material for 348 feet is available. Thus, we can write:
[tex](18+x+x)+(34+x+x)+(18+x+x)+(34+x+x)=348[/tex]Now, we can do a bit algebra and solve for "x". This is shown below:
[tex]\begin{gathered} (18+x+x)+(34+x+x)+(18+x+x)+(34+x+x)=348 \\ 18+2x+34+2x+18+2x+34+2x=348 \\ 104+8x=348 \\ 8x=348-104 \\ 8x=244 \\ x=\frac{244}{8} \\ x=30.5 \end{gathered}[/tex]Answer30.5