tion isThe rate of change of a function f(x) at the interval [a, b] is
[tex]r=\frac{f(b)-f(a)}{b-a}[/tex]
Since the given function is
[tex]f(x)=3x^3[/tex]
Since the given interval is [1, (1 + h)], then
a = 1
b = (1 + h)
Substitute x by a and b and use the rule above
[tex]\begin{gathered} x=a=1 \\ f(1)=3(1)^3=3(1)=3 \end{gathered}[/tex][tex]\begin{gathered} x=b=(h+1) \\ f(h+1)=3(h+1)^3 \end{gathered}[/tex]
Substitute them in the rule above
[tex]\begin{gathered} r=\frac{f(h+1)-f(1)}{(h+1)-1} \\ r=\frac{3(h+1)^3-3}{h+1-1} \\ r=\frac{3(h+1)^3-3}{h} \end{gathered}[/tex]
Take 3 as a common factor from the numerator
[tex]r=\frac{3\lbrack(h+1)^3-1\rbrack}{h}[/tex]
The rate of change of the given function is
[tex]undefined[/tex]