Respuesta :

We have the following equation:

[tex]-y^2-3=-3y[/tex]

by moving -3y to the left hand side, we have

[tex]-y^2+3y-3=0[/tex]

which is in the form

[tex]ay^2+by+c=0[/tex]

By comparing both equations, we can see that a=-1, b=3 and c=-3. By substituting these values in the quadratic formula, we get

[tex]y=\frac{-3\pm\sqrt[]{3^2-4(-1)(-3)}}{2(-1)}[/tex]

which gives

[tex]y=\frac{-3\pm\sqrt[]{9-12}}{-2}[/tex]

which leads to

[tex]y=\frac{-3\pm\sqrt[]{-3}}{-2}[/tex]

but

[tex]\begin{gathered} \sqrt[]{-3}=\sqrt{3}i \\ \text{where} \\ i=\sqrt[]{-1},\text{ the imaginary number} \end{gathered}[/tex]

Therefore, the solutions are:

[tex]\begin{gathered} y_1=\frac{-3+\sqrt[]{3i}}{-2} \\ \text{and} \\ y_2=\frac{-3-\sqrt[]{3}i}{-2} \end{gathered}[/tex]

RELAXING NOICE
Relax