Solution:
Let x and y be the non-negative real numbers. Then;
[tex]\begin{gathered} x+y=6 \\ y=6-x\ldots\ldots\ldots\text{.equation}1 \end{gathered}[/tex]Also, then the product of the two non-negative real numbers is;
[tex]\begin{gathered} xy=x(6-x) \\ xy=6x-x^2 \end{gathered}[/tex]At minimum;
[tex]\frac{dy}{dx}=0[/tex]Then;
[tex]\begin{gathered} \frac{d(xy)}{dx}=6-2x=0 \\ 6=2x \\ \text{Divide both sides by 2;} \\ \frac{6}{2}=\frac{2x}{2} \\ x=3 \end{gathered}[/tex]Put the value of x in equation 1, we have;
[tex]\begin{gathered} y=6-x \\ y=6-3 \\ y=3 \end{gathered}[/tex]Then, the smallest possible product of the two non-negative real numbers is;
[tex]3\times3=9[/tex]FINAL ANSWER: 9