Given:
The charges are
[tex]\begin{gathered} q1=-\text{ 2}\times10^{-6}\text{ C} \\ q2=-1.8\times10^{-5}\text{ C} \\ q3=1.5\times10^{-6}\text{ C} \end{gathered}[/tex]
The distance between q1 and q2 is L = 4 m.
To find the location of q3 where forces due to q1,q2 on q3 are zero.
Explanation:
Let the distance between q1 and q3 be x m, then the distance between q2 and q3 be (4-x) m.
The force on q3 due to q1 will be equal to the force on q3 due to q2.
[tex]\begin{gathered} \frac{kq1q3}{x^2}=\frac{kq2q3}{(4-x)^2} \\ q1(4-x)^2=q2(x)^2 \\ q1(16+x^2-8x)=q2x^2 \\ (q1-q2)x^2-8xq1+16q1=0 \end{gathered}[/tex]
On substituting the value, x will be
[tex]\begin{gathered} (2\times10^{-6}-1.8\times10^{-5})x^2-8\times(2\times10^{-6})x+16\times2\times10^{-6}\text{ =0} \\ -16\times10^{-6}x^2-16\times10^{-6}x+32^\times10^{-6}=0 \\ -16(x^2+x-2)=0 \\ x^2+2x-x-2=0 \\ x(x+2)-1(x+2)=0 \\ x=1,-2 \end{gathered}[/tex]
The value of x cannot be negative, so x=1.
The distance between q1 and q3 is 1 m and the distance between q2 and q3 is (4-1)=3 m