Respuesta :

EXPLANATION

Given the falling body equation:

[tex]h=16t^2[/tex]

Substituting for t=6:

[tex]h=16\cdot6^2=[/tex]

Computing the power:

[tex]h=16\cdot36[/tex]

Multiplying numbers:

[tex]h=576\text{ ft}[/tex]

Now, substituting for t=6.2:

[tex]h=16\cdot(6.2)^2[/tex]

Computing the power:

[tex]h=16\cdot38.44[/tex]

Multiplying numbers:

[tex]h=615.04\text{ ft}[/tex]

Hence, the solutions are:

For t= 6s ---> h=576 ft

For t= 6.2s ---> h= 615.04 ft

Subtracting both distances:

[tex]\Delta h=615.04-576=39.04_{\text{ }}ft[/tex]

Hence, the body will fall ≈ 39 ft between those seconds.

RELAXING NOICE
Relax