Describe the end behavior, the maximum number of x-intercepts, the existence of a maximum or minimum value for each of the following functions. Use graphing technology to confirm your thinking.

2, a)
Given:
[tex]f\mleft(x\mright)=-3x^3+3x^2-2x+1[/tex]Aim:
We need to find the end behavior, the maximum number of x-intercepts, the existence of a maximum or minimum value of the given functions.
Explanation:
Use graphing technology.
The graph of the given function is
One end of the curve is moving upward to infinity when x tends to negative infinity and another end is moving down to negative infinity when x tends to infinity.
Take the limit to infinity on the given function to find the end behavior.
[tex]\lim_{x\to\infty}f\mleft(x\mright)=\operatorname{\lim}_{x\to\infty}\mleft(-3x^3+3x^2-2x+1\mright)[/tex][tex]\lim_{x\to\infty}f\mleft(x\mright)=-3\infty+3\infty-2\infty+1=-\infty[/tex][tex]\lim_{x\to\infty}f\mleft(x\mright)=-\infty[/tex]Take limit to negative infinity on the given function to find the end behavior.
[tex]\lim_{x\to-\infty}f\mleft(x\mright)=\operatorname{\lim}_{x\to-\infty}\mleft(-3x^3+3x^2-2x+1\mright)[/tex][tex]\lim_{x\to-\infty}f\mleft(x\mright)=\infty[/tex]End behavior:
[tex]f\mleft(x\mright)=\infty\text{ as x}\rightarrow-\infty[/tex][tex]f\mleft(x\mright)=-\infty\text{ as x}\rightarrow\infty[/tex]We know that the x-intercept is the intersection point where the function f(x) crosses the x-axis.
The x-intercepts = (0.718.0)
Differentiate the given function with respect to x and set the result to zero.
Solve for x to find the existence of a maximum or minimum value of the given function.
[tex]f\mleft(x\mright)=-3x^3+3x^2-2x+1[/tex]Differentiate the given function with respect to x
[tex]f^{\prime}\mleft(x\mright)=-3\times3\left(x^2\right)+3\times2\left(x\right)-2[/tex][tex]f^{\prime}\mleft(x\mright)=-9x^2+6x-2[/tex]SEt f'(x) =0 and solve for x.
[tex]-9x^2+6x-2=0[/tex]Multiply both sides by (-1).
[tex]9x^2-6x+2=0[/tex]which is of the form
[tex]ax^2+bx+c=0[/tex]where a =9, b=-6 and c=2.
Use quadratic formula.
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]Substitute a =9, b=-6, and c=2 in the equation.
[tex]x=\frac{-\lparen-6)\pm\sqrt{\left(-6\right)^2-4\times9\times2}}{2\times9}[/tex][tex]x=\frac{6\pm\sqrt{36-72}}{18}[/tex][tex]x=\frac{6\pm i6}{18}[/tex][tex]x=\frac{1+i}{2},\frac{1-\imaginaryI}{2}[/tex]We get a complex value for x.
There is no maximum or minimum value of the given function in a real number.
Final answer:
[tex]f\mleft(x\mright)=\infty\text{ as x}\rightarrow-\infty[/tex][tex]f\mleft(x\mright)=-\infty\text{ as x}\rightarrow\infty[/tex]The x-intercepts = (0.718.0)
There is no maximum or minimum value for the given equation.