Describe the end behavior, the maximum number of x-intercepts, the existence of a maximum or minimum value for each of the following functions. Use graphing technology to confirm your thinking.

Describe the end behavior the maximum number of xintercepts the existence of a maximum or minimum value for each of the following functions Use graphing technol class=

Respuesta :

2, a)

Given:

[tex]f\mleft(x\mright)=-3x^3+3x^2-2x+1[/tex]

Aim:

We need to find the end behavior, the maximum number of x-intercepts, the existence of a maximum or minimum value of the given functions.

Explanation:

Use graphing technology.

The graph of the given function is

One end of the curve is moving upward to infinity when x tends to negative infinity and another end is moving down to negative infinity when x tends to infinity.

Take the limit to infinity on the given function to find the end behavior.

[tex]\lim_{x\to\infty}f\mleft(x\mright)=\operatorname{\lim}_{x\to\infty}\mleft(-3x^3+3x^2-2x+1\mright)[/tex]

[tex]\lim_{x\to\infty}f\mleft(x\mright)=-3\infty+3\infty-2\infty+1=-\infty[/tex]

[tex]\lim_{x\to\infty}f\mleft(x\mright)=-\infty[/tex]

Take limit to negative infinity on the given function to find the end behavior.

[tex]\lim_{x\to-\infty}f\mleft(x\mright)=\operatorname{\lim}_{x\to-\infty}\mleft(-3x^3+3x^2-2x+1\mright)[/tex]

[tex]\lim_{x\to-\infty}f\mleft(x\mright)=\infty[/tex]

End behavior:

[tex]f\mleft(x\mright)=\infty\text{ as x}\rightarrow-\infty[/tex]

[tex]f\mleft(x\mright)=-\infty\text{ as x}\rightarrow\infty[/tex]

We know that the x-intercept is the intersection point where the function f(x) crosses the x-axis.

The x-intercepts = (0.718.0)

Differentiate the given function with respect to x and set the result to zero.

Solve for x to find the existence of a maximum or minimum value of the given function.

[tex]f\mleft(x\mright)=-3x^3+3x^2-2x+1[/tex]

Differentiate the given function with respect to x

[tex]f^{\prime}\mleft(x\mright)=-3\times3\left(x^2\right)+3\times2\left(x\right)-2[/tex]

[tex]f^{\prime}\mleft(x\mright)=-9x^2+6x-2[/tex]

SEt f'(x) =0 and solve for x.

[tex]-9x^2+6x-2=0[/tex]

Multiply both sides by (-1).

[tex]9x^2-6x+2=0[/tex]

which is of the form

[tex]ax^2+bx+c=0[/tex]

where a =9, b=-6 and c=2.

Use quadratic formula.

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Substitute a =9, b=-6, and c=2 in the equation.

[tex]x=\frac{-\lparen-6)\pm\sqrt{\left(-6\right)^2-4\times9\times2}}{2\times9}[/tex]

[tex]x=\frac{6\pm\sqrt{36-72}}{18}[/tex]

[tex]x=\frac{6\pm i6}{18}[/tex]

[tex]x=\frac{1+i}{2},\frac{1-\imaginaryI}{2}[/tex]

We get a complex value for x.

There is no maximum or minimum value of the given function in a real number.

Final answer:

[tex]f\mleft(x\mright)=\infty\text{ as x}\rightarrow-\infty[/tex]

[tex]f\mleft(x\mright)=-\infty\text{ as x}\rightarrow\infty[/tex]

The x-intercepts = (0.718.0)

There is no maximum or minimum value for the given equation.

Ver imagen AssataC27147
RELAXING NOICE
Relax