Respuesta :

We want to find the solutions for the following equation

[tex]7^{x+3}=27^{x+2}[/tex]

Using the following property

[tex]\ln a^b=b\ln a[/tex]

we can apply the natural log on both sides of our equation and rewrite it

[tex]\begin{gathered} 7^{x+3}=27^{x+2} \\ \ln 7^{x+3}=\ln 27^{x+2} \\ (x+3)\ln 7=(x+2)\ln 27 \end{gathered}[/tex]

Using the distributive property, we have

[tex]\begin{gathered} (x+3)\ln 7=(x+2)\ln 27 \\ x\ln 7+3\ln 7=x\ln 27+2\ln 27 \end{gathered}[/tex]

Rewritting the expression isolating the unknown value, we have

[tex]\begin{gathered} x\ln 7+3\ln 7=x\ln 27+2\ln 27 \\ x\ln 7-x\ln 27=2\ln 27-3\ln 7 \\ x(\ln 7-\ln 27)=2\ln 27-3\ln 7 \\ x=\frac{2\ln27-3\ln7}{\ln7-\ln27} \end{gathered}[/tex]

Now, using a calculator we can find our result.

[tex]x=\frac{2\ln27-3\ln7}{\ln7-\ln27}=-0.55850682513\ldots\approx-0.5585[/tex]

RELAXING NOICE
Relax