Given the following question:
14, 7, 20, 8, 21, 14
[tex]\begin{gathered} =\sqrt[]{\frac{1}{n}\sum^n_{i\mathop=1}}(xi-s)^2_{} \\ \Sigma(xi-\mu)2=\frac{\Sigma(xi-\mu)2}{n} \\ \frac{\mleft(14-14\mright)2+\ldots+14-142}{2} \\ 14^2=14\times14=196 \\ \frac{196+\cdots+196}{2}=\frac{170}{6} \\ \frac{170}{6}=170\div6=\sqrt[]{28.333333333333} \\ =\sqrt[]{28.333333333333}=5.3229064742238 \\ 5.3229064742238\times5.3229064742238=28.333 \\ 5.3229064742238 \\ 2<5 \\ SD=5.32 \end{gathered}[/tex]