Solve for x I sent the problem in a picture

the number of cousins ( x) is 9
Explanation
Step 1
Set the equation:
Let
x represents the number of cousins
initial amount:1973
rate : ( 50 dollars per cousin)
total: 2423
so
a) the total = initial amount +( money from cousins)
and
money from cousins= 50*x
hence
[tex]\begin{gathered} total\text{ = 1973+50x} \\ \text{ replacing} \\ 2423=1973+50x\Rightarrow equation\text{ (1)} \end{gathered}[/tex]Step 2
solve the equation:
[tex]\begin{gathered} 2423=1973+50x\Rightarrow equation\text{ (1)} \\ \text{subtract 1973 in boht sides} \\ 2423-1973=1973+50x-1973 \\ 450=50x \\ \text{divide both sides by 50} \\ \frac{450}{50}=\frac{50x}{50} \\ 9=x \end{gathered}[/tex]therefore, the number of cousins ( x) is 9
I hope this helps you