Respuesta :

The given triangle is shown below

From the triangle

[tex]a=22ft,b=20ft,c=18ft,C=\text{?}[/tex]

Using the law of Cosines

[tex]c^2=a^2+b^2-2ab\cos C[/tex]

Substitute the values of a, b, c into the formula

This gives

[tex]18^2=22^2+20^2-2(22)(20)\cos C[/tex]

Simplifying the expression

[tex]\begin{gathered} 324=484+400-880\cos C \\ 324=884-880\cos C \end{gathered}[/tex]

Collect like terms

[tex]\begin{gathered} 324-884=-880\cos C \\ -560=-880\cos C \end{gathered}[/tex]

Divide both sides by -880

[tex]\begin{gathered} \frac{-560}{-880}=\cos C \\ \cos C=0.6364 \end{gathered}[/tex]

Find the value of C

[tex]\begin{gathered} C=\cos ^{-1}(0.6364) \\ C=50.5^{\circ} \end{gathered}[/tex]

Ver imagen AzlaanA665253
RELAXING NOICE
Relax