Respuesta :

Given that the ratio of the radius of two distinct spheres is;

[tex]3\colon4[/tex]

The surface area of a sphere is;

[tex]A=4\pi\times r^2[/tex]

Thus, the surface area of the first sphere is;

[tex]\begin{gathered} A_1=4\pi(3)^2 \\ A_1=36\pi \end{gathered}[/tex]

Similarly, the surface area of the second sphere is;

[tex]\begin{gathered} A_2=4\pi(4)^2 \\ _{}A_2=64\pi \end{gathered}[/tex]

Hence, the ratio of the surface areas is;

[tex]\frac{A_1}{A_2}=\frac{36\pi}{64\pi}[/tex]

Reducing the fraction, we have;

[tex]\begin{gathered} \frac{A_1}{A_2}=\frac{9}{16} \\ A_1\colon A_2=9\colon16 \end{gathered}[/tex]

CORRECT OPTION: C

RELAXING NOICE
Relax