Solve the following exponential equation. Express your answer as both an exact expression and a decimal approximation rounded to two decimal places. Use e= 2.71828182845905.

Step 1
Given;
[tex]e^{-3x-3}=33^{2x+8}[/tex]Required; Solve the following exponential equation. Express your answer as both an exact expression and a decimal approximation rounded to two decimal places.
Step 2
Solve the equation
[tex]\begin{gathered} Add\text{ natural logarithm to both sides} \\ lne^{-3x-3}=ln33^{2x+8} \\ -3x-3=(2x+8)(ln33) \end{gathered}[/tex][tex]\begin{gathered} -3x=2xln33+8ln33+3 \\ -3x-2xln33=8ln33+3 \\ x(-3-2ln33)=8ln33+3 \\ \frac{x(-3-2ln33)}{(-3-2ln33)}=\frac{8ln33+3}{(-3-2ln33)} \\ x=\frac{8ln33+3}{(-3-2ln33)} \end{gathered}[/tex]Answer;
[tex]\begin{gathered} As\text{ an exact expression, x =}\frac{8ln(33)+3}{-3-2ln(33)} \\ Approximation\text{ to 2 decimal places=-3.10} \end{gathered}[/tex]