Use a formula that relates molecular mass, density, pressure, temperature, and the constant R.
[tex]\rho=\frac{M\cdot P}{RT}[/tex]Using the given information, we have
[tex]\rho=\frac{29\cdot\frac{gr}{\text{mol}}\cdot1\text{atm}}{0.082\cdot\frac{L\cdot\text{atm}}{\text{mol}\cdot K}\cdot(295.15K)}=\frac{29}{24.2023}=\frac{1.2gr}{L}[/tex]The density is 1.2 grams per liter.
Then, use the density formula to find the mass.
[tex]\begin{gathered} \rho=\frac{m}{V}\to m=\rho\cdot V \\ m=\frac{1.2gr}{L}\cdot60m^3 \end{gathered}[/tex]But, 1 liter equals 0.001 m^3 and 1kg equals 1000gr.
[tex]\begin{gathered} m=\frac{1.2gr\cdot\frac{1\operatorname{kg}}{1000gr}}{1L\cdot\frac{0.001m^3}{1L}}\cdot60m^3=\frac{0.072}{0.001}kg \\ m=72\operatorname{kg} \end{gathered}[/tex]Therefore, the answer is c. 72 kg.