First, calculate the mean of the scores. Since there are 10 scores, then the mean is given by:
[tex]\begin{gathered} \bar{s}=\frac{96+91+85+89+83+85+94+95+90+92}{10} \\ =\frac{900}{10} \\ =90 \end{gathered}[/tex]Calculate the absolute value of the difference between the mean and each of the scores:
[tex]\begin{gathered} |s_1-\bar{s}|=|96-90|=6 \\ |s_2-\bar{s}|=|91-90|=1 \\ |s_3-\bar{s}|=|85-90|=5 \\ |s_4-\bar{s}|=|89-90|=1 \\ |s_5-\bar{s}|=|83-90|=7 \\ |s_6-\bar{s}|=|85-90|=5 \\ |s_7-\bar{s}|=|94-90|=4 \\ |s_8-\bar{s}|=|95-90|=5 \\ |s_9-\bar{s}|=|90-90|=0 \\ |s_{10}-\bar{s}|=|92-90|=2 \end{gathered}[/tex]The mean absolute deviation is the average of the absolute deviations from each score to the mean. Calculate the mean from the deviations:
[tex]\begin{gathered} \frac{6+1+5+1+7+5+4+5+0+2}{10} \\ =\frac{36}{10} \\ =3.6 \end{gathered}[/tex]Therefore, the mean absolute deviation of Taylor's scores, is 3.6