we have the polynomial
x^4 - 5x^2 -10x -6 =0
If (-1+i) is a root
then
by the conjugate theorem
(-1-i) is also a root
The factors of the given roots are
[x-(-1+i)] and [x-(-1-i)]
step 1
Multiply the factors
[x-(-1+i)][x-(-1-i)]=x^2-x(-1-i)-x(-1+i)+(-1+i)(-1-i)
=x^2+x+xi+x-xi+(-1)^2-(i)^2
=x^2+2x+1-i^2
Remember that i^2=-1
=x^2+2x+1-(-1)
=x^2+2x+2
Step 2
Divide the given polynomial by the quadratic equation (x^2+2x+2)
x^4 - 5x^2 -10x -6 : (x^2+2x+2)
x^2-2x-3
-x^4-2x^3-2x^2
--------------------------
-2x^3-7x^2-10x-6
2x^3+4x^2+4x
------------------------
-3x^2-6x-6
3x^2+6x+6
--------------------
0
so
we have that
x^4 - 5x^2 -10x -6=(x^2+2x+2)(x^2-2x-3)
step 3
Solve the quadratic equation
(x^2-2x-3)=0
Using the formula
a=1
b=-2
c=-3
substitute
[tex]x=\frac{-(-2)\pm\sqrt{-2^2-4(1)(-3)}}{2(1)}[/tex][tex]x=\frac{2\pm4}{2}[/tex]therefore
The roots of the given polynomial are
[tex]\begin{gathered} x=-1+i \\ x=-1-i \\ \\ x=3 \\ \\ x=-1 \end{gathered}[/tex]