The confidence interval is defined as
[tex]I=p\pm z\sqrt[]{\frac{p(1-p)}{n}}[/tex]z = 1.96, n = 1500, and p = 0.55.
[tex]\begin{gathered} I=0.55\pm1.96\cdot\sqrt[]{\frac{0.55(1-0.55)}{1500}} \\ I=0.55\pm0.03 \\ I_1=0.55+0.03=0.58 \\ I_2=0.55-0.03=0.52 \end{gathered}[/tex]Then, we find the margin of error
[tex]\begin{gathered} M=z\cdot\sqrt[2]{\frac{p(1-p)}{n}}=0.96\cdot\sqrt[]{\frac{0.55(1-0.55)}{1500}} \\ M\approx0.03 \end{gathered}[/tex]