An rock is thrown upward from a platform that is 204 feet above ground at 45 feet per second. Use the projectile formula

EXPLANATION
Since we have the equation:
[tex]h=-16t^2+v_0t+h_0[/tex]Where v_0 = 45 feet per second and h_0 = height above ground = 204
Plugging in the terms into the equation:
[tex]h=-16t^2+45t+204[/tex]When the rock hits the ground, the height is of 0 ft, thus we need to isolate the time, as shown as follows:
[tex]0=-16t^2+45t+204[/tex][tex]\mathrm{Switch\:sides}[/tex][tex]-16t^2+45t+204=0[/tex][tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}[/tex][tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex][tex]\mathrm{For\:}\quad a=-16,\:b=45,\:c=204[/tex][tex]t_{1,\:2}=\frac{-45\pm \sqrt{45^2-4\left(-16\right)\cdot \:204}}{2\left(-16\right)}[/tex]Apply rule -(-a) = a:
[tex]=\sqrt{45^2+4\cdot \:16\cdot \:204}[/tex][tex]\mathrm{Multiply\:the\:numbers:}\:4\cdot \:16\cdot \:204=13056[/tex][tex]=\sqrt{45^2+13056}[/tex][tex]45^2=2025[/tex][tex]=\sqrt{2025+13056}[/tex][tex]\mathrm{Add\:the\:numbers:}\:2025+13056=15081[/tex][tex]=\sqrt{15081}[/tex][tex]t_{1,\:2}=\frac{-45\pm \sqrt{15081}}{2\left(-16\right)}[/tex][tex]\mathrm{Separate\:the\:solutions}[/tex][tex]t_1=\frac{-45+\sqrt{15081}}{2\left(-16\right)},\:t_2=\frac{-45-\sqrt{15081}}{2\left(-16\right)}[/tex][tex]\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}[/tex][tex]t=-\frac{-45+\sqrt{15081}}{32},\:t=\frac{45+\sqrt{15081}}{32}[/tex]Expressing as decimals:
[tex]t=-2.43,\text{ t=5.243897}[/tex]Since the solution can not be negative, the only possibility is a positive solution.
Therefore, the rock will hit the ground after 5.24 seconds