Answer:
n = 4
Explanation:
To find the value of n, we will use the following properties:
[tex]\begin{gathered} \frac{2^a}{2^b}=2^{a-b} \\ 4^n=2^{2n} \end{gathered}[/tex]Now, we have the expression:
[tex]2^3\cdot4^n=2^{11}[/tex]Divide both sides by 2³, so:
[tex]\begin{gathered} \frac{2^3\cdot4^n}{2^3}=\frac{2^{11}}{2^3} \\ 4^n=2^{11-3} \\ 4^n=2^8 \end{gathered}[/tex]Then, we can replace 4^n by 2^(2n), so:
[tex]2^{2n}=2^8[/tex]Since the base on both sides is equal to 2, we can equal the exponents, so:
[tex]2n=8[/tex]Finally, divide both sides by 2, so:
[tex]\begin{gathered} \frac{2n}{2}=\frac{8}{2} \\ n=4 \end{gathered}[/tex]So, the value of n is 4.