We are asked to graph the following parabola
[tex]y=(x+2)^2-5_{}[/tex]Let us compare this equation with the standard vertex form.
[tex]y=a(x-h)+k[/tex]The vertex is the point (h, k)
So, the vertex of the given equation is (-2, -5)
Now let us find the y-intercept.
Substitute x = 0 into the given equation
[tex]\begin{gathered} y=(0+2)^2-5_{} \\ y=(2)^2-5_{} \\ y=4-5 \\ y=-1 \end{gathered}[/tex]So, the y-intercept point is (0, -1)
Now let us find the x-intercepts.
Substitute y = 0 into the given equation
[tex]\begin{gathered} 0=(x+2)^2-5_{} \\ 0=x^2+2\cdot x\cdot(2)+2^2-5 \\ 0=x^2+4x+4-5 \\ 0=x^2+4x-1 \end{gathered}[/tex]Use the quadratic formula to solve the above quadratic equation
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]Where a = 1, b = 4 and c = -1
[tex]\begin{gathered} x=\frac{-4\pm\sqrt[]{4^2-4(1)(-1)}}{2(1)} \\ x=\frac{-4\pm\sqrt[]{16^{}+4}}{2} \\ x=\frac{-4\pm\sqrt[]{20}}{2} \\ x=\frac{-4+\sqrt[]{20}}{2},x=\frac{-4-\sqrt[]{20}}{2} \\ x=0.236,\: x=-4.236 \end{gathered}[/tex]So, the x-intercepts are (0.236, 0) and (-4.236, 0)
Now let us plot all these points and sketch the graph of the parabola