Answer:
Points on the line are;
[tex]\begin{gathered} (0,10) \\ (2,4) \end{gathered}[/tex]Graphing the line we have;
Explanation:
Given a line of slope -3 and passes through the point (4,-2).
[tex]\begin{gathered} m=-3 \\ (x_1,y_1)=(4,-2) \end{gathered}[/tex]Let us derive the equation of the line and graph the line;
Recall that;
[tex]y-y_1=m(x-x_1)[/tex]substituting the given values;
[tex]\begin{gathered} y-(-2)=-3(x-4) \\ y+2=-3x+12 \\ y=-3x+12-2 \\ y=-3x+10 \end{gathered}[/tex]The equation of the line is;
[tex]y=-3x+10[/tex]Let us now derive the points on the line;
At x= 0;
[tex]\begin{gathered} y=-3x+10 \\ y=0+10 \\ y=10 \\ (0,10)_{} \end{gathered}[/tex]At x = 2;
[tex]\begin{gathered} y=-3x+10 \\ y=-3(2)+10 \\ y=-6+10 \\ y=4 \\ (2,4) \end{gathered}[/tex]Points on the line are;
[tex]\begin{gathered} (0,10) \\ (2,4) \end{gathered}[/tex]Graphing the line we have;