Given by and vwz,what is the perimeter of the trapezoid WXYZ ..

We are given two similar triangles, therefore, we have the following relationship:
[tex]\frac{VZ}{ZY}=\frac{VW}{WX}[/tex]Solving for VW:
[tex]VW=WX\times\frac{VZ}{ZY}[/tex]Replacing in the equation:
[tex]VW=36\times\frac{(44-27.5)}{27.5}[/tex]Solving the operations:
[tex]VW=21.6[/tex]Now we use the Pythagorean theorem to determine the length of WZ, that is:
[tex]WZ=\sqrt[]{(VW)^2-(VZ)^2}[/tex]Replacing:
[tex]WZ=\sqrt[]{(21.6)^2-(44-27.5)^2}[/tex]Solving the operations:
[tex]\begin{gathered} WZ=\sqrt[]{466.56-272.25} \\ WZ=\sqrt[]{194.31} \\ WZ=13.9 \end{gathered}[/tex]Now we find XY using the following relationship:
[tex]\frac{XY}{VY}=\frac{WZ}{VZ}[/tex]Solving for XY:
[tex]XY=VY\times\frac{WZ}{VZ}[/tex]Replacing the values:
[tex]XY=44\times\frac{13.9}{44-27.5}[/tex]Solving the operations:
[tex]XY=37.1[/tex]The perimeter of the figure is:
[tex]P=XW+WZ+ZY+XY[/tex]Replacing:
[tex]P=36+13.9+27.5+37.1[/tex]Solving the operations:
[tex]P=114.5[/tex]