Respuesta :
Given data:
First we will find :
[tex]x\mathrm{}p(x)andx^2p(x)[/tex]X P(x) x.p(x) x^2.p(x)
4 0.13 0.52 2.08
8 0.08 0.64 5.12
11 0.13 1.43 15.73
12 0.12 1.44 17.28
20 0.54 10.8 216
total 14.83 256.21
For x.p(x), we will multiply x and p(x).
Similarly, x^2.p(x) we will multiply x twice and p(x).
Now,
(a) mean is given as:
[tex]\operatorname{mean}(\mu)=\Sigma x.p(x)[/tex]Hence, from the calculation above, we have:
[tex]\text{Mean}=14.83[/tex]
(b) Variance is given by:
[tex]\begin{gathered} \text{Variance(}\sigma^2)=\Sigma.x^2p(x)^{}-\mu^2 \\ =256.21-219.9289 \\ =36.2811 \\ \approx36.281 \end{gathered}[/tex](c) Standard deviation is given by:
[tex]\begin{gathered} \text{Standard deviation(}\sigma)=\sqrt[]{36.2811} \\ =6.02337 \\ \approx6.023 \end{gathered}[/tex](d) Expectation value of X is given by:
[tex]\begin{gathered} E(X)=\mu \\ =14.83 \end{gathered}[/tex]