Given the position of the particle and using interval notation, when is the particle moving left and when is it moving right

we have the expression
[tex]\frac{2}{3}t^3-\frac{9}{2}t^2-18t[/tex]Factor (2/3)t
[tex]\frac{2}{3}t(t^2-\frac{27}{4}t^{}-27)[/tex]Solve the quadratic equation
using the formula
a=1
b=-27/4
c=-27
[tex]t=\frac{-(-\frac{27}{4})\pm\sqrt[]{(-\frac{27}{4})^2-4(1)(-27)}}{2(1)}[/tex][tex]t=\frac{\frac{27}{4}\pm\sqrt[]{\frac{2457}{16}}}{2}[/tex][tex]t=\frac{27}{8}\pm\frac{\sqrt[]{2457}}{8}[/tex]The values of t are
t=-2.82 and t=9.57
therefore
the intervals are
(-infinite, -2.82)