Find the amplitude and period of the function. Y = 3/4 cos 4xGive the exact values, not decimal approximations.

Given the function:
[tex]y=\frac{3}{4}\cos (4x)[/tex]If we compare this to the general form:
[tex]y=A\cos (bx+\delta)[/tex]Where A is the amplitude, δ is the phase and b is a parameter, we identify:
[tex]\begin{gathered} A=\frac{3}{4} \\ \delta=0 \\ b=4 \end{gathered}[/tex]So the amplitude of the function is 3/4.
For the period, we need to remember that the period of a cosine function is 2π. Then:
[tex]y=\frac{3}{4}\cos (4x)=\frac{3}{4}\cos (4x+2\pi)=\frac{3}{4}\cos (4(x+\frac{\pi}{2}))[/tex]So the period of the function is π/2.