Respuesta :

Given the function:

[tex]y=\frac{3}{4}\cos (4x)[/tex]

If we compare this to the general form:

[tex]y=A\cos (bx+\delta)[/tex]

Where A is the amplitude, δ is the phase and b is a parameter, we identify:

[tex]\begin{gathered} A=\frac{3}{4} \\ \delta=0 \\ b=4 \end{gathered}[/tex]

So the amplitude of the function is 3/4.

For the period, we need to remember that the period of a cosine function is 2π. Then:

[tex]y=\frac{3}{4}\cos (4x)=\frac{3}{4}\cos (4x+2\pi)=\frac{3}{4}\cos (4(x+\frac{\pi}{2}))[/tex]

So the period of the function is π/2.

RELAXING NOICE
Relax