we are given the following equation:
[tex]2x^2+9x=x-368[/tex]we are asked to put this equation in the form:
[tex](x+a)^2=b[/tex]first, let's subtract x on both sides:
[tex]\begin{gathered} 2x^2+9x-x=-368 \\ 2x^2+8x=-368 \end{gathered}[/tex]Now we add 368 on both sides:
[tex]2x^2+8x+368=0[/tex]Now we will divide by "2" both sides of the equation:
[tex]\begin{gathered} \frac{2x^2}{2}+\frac{8x}{2}+\frac{368}{2}=0 \\ x^2+4x+184=0 \end{gathered}[/tex]Now we will separate 184 as 180 + 4, like this:
[tex]x^2+4x+180+4=0[/tex]Now we will factor the expression as a perfect square trinomial, like this:
[tex]\begin{gathered} (x^2+4x+4)+180=0 \\ (x+2)^2+180=0 \end{gathered}[/tex]Now we will subtract 180 on both sides:
[tex](x+2)^2=-180[/tex]And thus we have obtained the desired form for the expression.