Respuesta :
13.2 m/s
Explanation
Step 1
Diagram
the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. so, if we ignore the friction, we can se apply this to set an equation
[tex]Energy\text{ at A= Energy at B}[/tex]a) At a , the rollercoaster has
potential gravitational energy ( due to the heigth), as it start from the rest the velocity is zero,s o the kinetick energy is zero
b) at B, the rollercoster has
potential gravitational energy ( due to the heigth) and kinetick energy ( due to its mass ena velocity)
hence
[tex]\begin{gathered} Energy\text{ at A= Energy at B} \\ 0+mgh_1=\frac{1}{2}mv^2+mgh_2 \end{gathered}[/tex]Step 2
let
[tex]\begin{gathered} mass\text{ =}140\text{ kg} \\ h_1=13.8 \\ h_2=4.9 \\ \end{gathered}[/tex]replace and solve for v
[tex]\begin{gathered} \begin{equation*} mgh_1=\frac{1}{2}mv^2+mgh_2 \end{equation*} \\ m\left(gh_1\right)=m\left(\frac{1}{2}v^2+gh_2\right? \\ (gh_1)=\frac{1}{2}v^2+gh_2 \\ swubtract\text{ gh}_2\text{ in both sides} \\ (gh_1)-gh_2=\frac{1}{2}v^2 \\ g\lparen h_1-h_2)=\frac{1}{2}v^2 \\ \begin{equation*} \end{equation*} \\ \\ \end{gathered}[/tex]so
[tex]\begin{gathered} 2*g\operatorname{\lparen}h_1-h_2)=v^2 \\ square\text{ root in both sides} \\ \sqrt{2g\lparen h_1-h_2)}=\text{ v} \\ v=\sqrt{2*9.8\left(13.8-4.9\right?} \\ v=13.2\text{ m/s} \\ \\ \end{gathered}[/tex]therefore, the answer is
13.2 m/s
I hope this helps you

