we make a drawing
where w is width
area of a rectangle is
[tex]A=l\times w[/tex]where a is tha area, l the length and w the width
then replacing the area and values of length and width
[tex]\begin{gathered} 360=(w+9)\times(w) \\ 360=w^2+9w \end{gathered}[/tex]we rewrite the expression equaling 0 to find w
[tex]\begin{gathered} w^2+9w=360 \\ w^2+9w-360=0 \end{gathered}[/tex]factor by quadratic formula
[tex]w=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]where a is 1, b is 9 and c -360
[tex]\begin{gathered} w=\frac{-(9)\pm\sqrt[]{(9)^2-4(1)(-360)}}{2(1)} \\ \\ w=\frac{-9\pm\sqrt[]{81+1440}}{2} \\ \\ w=\frac{-9\pm\sqrt[]{1521}}{2} \\ \\ w=\frac{-9\pm39}{2} \end{gathered}[/tex]we have two solutions to w
[tex]\begin{gathered} w_1=\frac{-9+39}{2}=15 \\ \\ w_2=\frac{-9-39}{2}=-24 \end{gathered}[/tex]but we use the possitive number because is a measure and the measure are not negatives
the long of the room is
[tex]w+9[/tex]replacing w
[tex]\begin{gathered} 15+9 \\ =24 \end{gathered}[/tex]tha