Part 2 is vertex , axis of symmetry and x intercept


Quadratic equation in standard form:
[tex]\begin{gathered} f(x)=ax^2+bx+x \\ \\ \end{gathered}[/tex]Vertex:
To find the vertex first you need to find the axis of symmetry (x-value on the vertex):
[tex]\begin{gathered} f(x)=ax^2+bx+c \\ \\ \text{axis of symmetry:} \\ x=-\frac{b}{2a} \\ \\ \\ \\ x=-\frac{(-2)}{2(1)}=\frac{2}{2}=1 \end{gathered}[/tex]Then, find the value of the function in x=1
[tex]\begin{gathered} h(1)=1^2-2(1)+1 \\ h(1)=1-2+1 \\ h(1)=0 \end{gathered}[/tex]x-intercept: point where the graph cross the x-axis (when h(x) is 0)
the x-intercept of the given function is the vertex, because h(x)=0 in (1,0)