Respuesta :

Given the equation of the parabola:

[tex]g(x)=x^2-5x+14[/tex]

We will complete the square to find the vertex

So, we will add and subtract the square of half the coefficient of x

So,

[tex]\begin{gathered} g(x)=x^2-5x+14+(\frac{5}{2})^2-(\frac{5}{2})^2 \\ g(x)=(x^2-5x+(\frac{5}{2})^2)+(14-(\frac{5}{2})^2) \\ g(x)=(x-\frac{5}{2})^2+\frac{31}{4} \\ \\ g(x)=(x-2.5)^2+7.75 \end{gathered}[/tex]

So, the answer will be the vertex = (2.5, 7.75)

RELAXING NOICE
Relax